联系我们
公司名称:富联注册电机股份有限公司
公司地址:海南省三沙市富联娱乐电机股份有限公司
电话:15936212002
传真:400-822-6211
邮箱:595588519@qq.com
集团网址:http://www.hlzsy.cn
内容详情
首页[傲世皇朝注册]平台招商注册站
作者:an888    发布于:2024-02-26 14:48   

  首页[傲世皇朝注册]平台招商注册站仪器信息网步进电机驱动原理专题为您提供2024年最新步进电机驱动原理价格报价、厂家品牌的相关信息, 包括步进电机驱动原理参数、型号等,不管是国产,还是进口品牌的步进电机驱动原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合步进电机驱动原理相关的耗材配件、试剂标物,还有步进电机驱动原理相关的最新资讯、资料,以及步进电机驱动原理相关的解决方案。

  生物反应器对于过程中补料、补酸碱的需求决定了设备对蠕动泵控制精度的高要求,而步进电机控制蠕动泵的方式有多种,用于生物反应器上的通常是脉冲、模拟量和RS-485通讯三种。为了研究这三种控制方式对于蠕动泵控制精度的直观影响,HOLVES专门做了一次对比实验。首先,先要了解这三种驱动方式分别是什么?脉冲量:是取值总是不断的在0(低电平)和1(高电平)之间交替变化的数字量。每秒钟脉冲交替变化的次数称为频率。脉冲量主要用于步进电机和伺服电机的位置控制、速度控制、扭矩控制等。模拟量:是连续的电压、电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。模拟量多是非电量,而PLC只能处理数字量、电量,所以要实现它们之间的转换需要有传感器把模拟量转换成数电量。如果这一电量不是标准的,还需要通过变送器把非标准的电量转换成标准的电信号。此外,还需要有模拟量输入单元(AD)把这些标准的电信号转换成数字信号。RS-485:是一种串行数据接口标准,为了扩展应用范围通信能力,增加了多点、双向通信能力,即允许在一条平衡总线个接收器,同时还增加了发送器的驱动能力和通信冲突的保护特性,通过差分传输扩展总线的共模范围。#实验测试#1、实验设计测试3种不同驱动方式的蠕动泵在“不同转速下泵出相同体积的液体”和“相同转速下泵出不同液体体积”两种情况下,通过液体体积与设定值的差异去判断步进电机的驱动方式在不同于校准参数时对蠕动泵精度的影响。2、实验方法及步骤(1)实验材料脉冲量蠕动泵(测试前已进行校准)模拟量蠕动泵(测试前已进行校准)RS-485通讯蠕动泵(测试前已进行校准)16号硅胶管量筒1(量程:20mL,精度:0.5mL)量筒2(量程:50mL,精度:1mL)烧杯纯水(2)实验步骤①将16号硅胶管扣入蠕动泵滚轮中心,扣上盖板以固定蠕动泵;②将硅胶管进液端和出液端均放置在装有纯水的烧杯中;③设定手动转速,将硅胶管内的空气排出,当纯水泵至硅胶管出液端管口时,即下图红线位置,停止泵液;④将出液端放置在合适量程的量筒内,注意不要贴壁,以防液体挂壁影响实验结果;⑤在设备上设置好蠕动泵的转速和目标泵出液的体积后,运行蠕动泵,并记录运行时间;⑥泵液结束后,观察并记录实际泵出液的体积;⑦重复以上操作,测试并记录所有蠕动泵的运行数据。3、注意事项①蠕动泵在进行实验前,统一使用16号硅胶管以50rpm的转速泵出20mL的泵出液体积,以进行校准操作。②在实验进行过程中,无论泵出液体积出现多少差异,都不可再进行校准操作。③读取泵出液体积时,将量筒放在平整的桌面上,使视线与量筒内液体凹液面的最低处保持水平。4、实验数据分析实验的数据进行整理,得到下表:(步进电机驱动精度测试)(精度测试散点示意图)从表中数据可以看出,一旦改变了转速和泵出量,不同的驱动方式控制的蠕动泵会有不同结果。3种驱动方式中,RS-485通讯方式的控制精度最优,脉冲次之,模拟量的误差最大。RS-485通讯的优点RS-485通讯方式除了赋予蠕动泵高控制精度外,还具备以下优点:①系统运行稳定——利用专用通信总线把集中器和主站安全、可靠地连接起来。除非设备接口硬件损坏,或者总线线路断开,否则总线抄表系统会一直保持良好的通信效果和抄收成功率。②通信速率高——由于使用的是专用的有线通信线路连接,线路上除了通信信号外,再无其他信号。且外来的干扰信号耦合到线路后的衰减很大,所以集中器能以较高的速率与主站通信。③抗干扰——RS-485总线信道是专用的通信信道,通过在通信线缆上添加的屏蔽,可以有效地保证通信效果,所以具有较强的抗空间干扰性能。HOLVES的生物反应器在步进电机的驱动方式上已基本更新为RS-485通讯方式,有效地提高了发酵过程中蠕动泵的调控性能。HOLVES一直在为全方位提高生物反应器的性能努力希望为生物实验提供更为自动化和更为精密的设备。注:本篇文章内容为霍尔斯HOLVES版权所有,未经授权禁止转载及使用。

  海顿科克直线传动是全球著名的直线传动设备制造公司,最近公司推出了自带DCM4826X驱动器的43000固定轴式电机。该驱动器支持整步,半步和4,8,16,32,64细分。该系统中的43000电机同样也可以替换成43000双叠厚厚电机,同时电机的丝杆有多种步长可以选择。该系统配备43000单叠厚电机可以提供最大220N的推力,如果配备43000双叠厚电机则推力最大可以达到337N。根据选配的螺杆种类不同和电机的步距角的不同,该系统的步进步长范围为1.5微米-127微米。驱动器的供电电压范围为12-48V,其最大输出电流为2.6A,电机额定电压有3种选择分别是2.33V,5V,12V。我们在给驱动器供电的时候,一般我们建议遵循8:1原则,就是驱动器供电电压:电机电压=8:1,例如某系统的供电电压为40V,那么在选择电机的时候,最好是选择5V的电机,驱动器通过调节电流来影响电机的输出力矩,所以电机能不能发挥出最好性能有一个很重要的因素就是驱动器和电机的电压比。DCM4826X通过USB接口,驱动器可以很方便连接到电脑,通过电脑界面可以对驱动器的额定电流,保持电流,运行时间,细分数一一进行设置,这些参数设置好以后,驱动器就会根据上位机发来的方向,脉冲信号正常工作,该驱动器的方向、脉冲和使能信号采用光电隔离输入,使信号源与驱动器主电源相互隔离,互不干扰。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动全新推出了通过美国RoHs认证的PCM4806型IDEA可编程直线步进电机驱动器,该型号驱动器是海顿IDEA驱动器家族的最新成员,它主要趋向提供更小电流从而去驱动更小海顿永磁式的直线型驱动器的加入,IDEA系列驱动器已经可以驱动海顿所有的直线步进电机型号。IDEA驱动器是一个结构紧凑,使用方便的驱动器,它可以通过用户电脑屏幕上的操作界面对驱动器进行所有的编程,整个编程过程用户只需点击用户界面上通俗易懂的按纽就可以完成。用户在开始编程之前需要先输入海顿电机的品号(每个海顿电机都有一个品号),这样软件就会根据品号,自行设定电机的初始参数(默认值),有了这个功能用户就算不了解复杂的电机参数和深奥的步进电机原理也一样可以完成编程。而对于一个熟练的用户来说,软件同样也允许用户在电机的安全范围内改变电机的默认值!另外这个软件可以让用户在编程时一行一行的去调试程序,同时在正式连接到外部设备上前,输入和输出信号也可以在软件上面得到完全的模拟!IDEA驱动器需要一个独立的能提供12-48V电压的电源提供工作电压,驱动器的输出电流为2.6A/相(峰值为3.68A/相),驱动器自身配有8个I/O端口(4个输出端口,4个输入端口),每个输入端口可以输入5-24V电压,以及最大4mA的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流,通过一根一端是普通USB接口,另一端是小型USB接口的数据线就可以把驱动器和电脑联接起来!更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线种规格的电机,该系列电机具有结构紧凑,性能稳定,推力大等诸多优先,比目前市场上所有的同种尺寸的电机都要优异的多。G4系列电机在设计和制造的过程中都以提高性能和寿命为目标,产品使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承以保证产品在整个使用寿命中都能保持免维护和重复定位精度。G4永磁式电机提供了异常高的推力-尺寸比,在很多对安装空间有要求的精密部件中是不二的选择,比如医疗设备,科学仪器,扫描仪器,打印设备以及其他的精密的光学仪器上。每种尺寸的电机都包含固定轴式,贯通轴式,外部驱动式3种形式,而且每款电机都可以根据需要选择不同步长的螺杆,另外螺杆的行程也可以根据需要截取不同的长度。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动是直线传动领域的领导者,近日公司又推出了一款全新产品,就是G4(第4代)19000系列永磁直线步进电机,该电机外径尺寸约为20mm,和原来的海顿低一代的20000系列电机相比,虽然大小差不多,但是G4电机却有更好的稳定性和更大的动力输出,这也是海顿推出的第3款G4电机,先前推出的分别是G4-25000(外径26mm)和G4-37000(外径36mm)系列电机,G4-19000电机的推出也使得海顿G4系列电机变的更加齐全。和先前推出的2款G4电机一样,G4-19000电机同样产用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承!这些技术上的改进使得电机的性能和稳定性都有了较大的提高。G4-19000直线步进电机可以在较小的空间内提供比较大的推力,并且定位精确,因此该电机在打印机,分析仪器,实验室装备等设备上有着普遍的使用,另外在其他小空间需要大推力的场合,海顿电机也是不二的选择。该系列电机和其他海顿电机一样,都有3种形式可以选择,分别是固定轴式,贯通轴式和外部驱动式,我们的工程师会依据您的不同应用条件,为您选择最适合您使用的电机。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动最近又推出了一款外部驱动式的IDEA直线步进电机,该产品的推出完善了43000系列的IDEA电机产品,目前该系列有固定轴式,贯通轴式和外部驱动式3种结构可选,IDEA电机与普通的电机相比,直接在电机的后端盖上集成了驱动器和控制器,通过一个普通的数据线,用电脑直接就可以对电机进行编程和调试。IDEA外部驱动式电机可以选择搭配不同导程的螺杆,其最大行程最大可以达到51cm,该电机特别适合用在小型的升降平台,精密的激光设备,高精度的扫描设备,精密的阀门控制设备以及其他很多需要精密控制的场合。IDEA系统是把驱动单元和可编程的控制单元整合到一起的系统,然后通过独特的设计直接整合到了电机的后端盖上,形成一个整体,编程前只要把IDEA特定的软件安装到电脑中,通过数据线把IDEA电机和电脑相连,然后只要点击电脑界面上的一些通俗易懂的按钮就可以对电机进行编程,在完成编程后,还可以在该软件下逐行的进行程序调试,并且输入和输出端口也可以在该软件中得到完全的模拟。该电机其他特性包括可以控制运行电流,驱动器需要一个能提供12-48V电压的电源提供工作电压,每个输入端口可以输入5-24V电压,以及最大4mA的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流!更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动最近推出了通过美国RoHS认证的贯通轴式的IDEA驱动电机,这种电机在后端盖上安装了一个智能驱动器,该驱动器结构精巧,并且操作简单,只要在电脑上安装GUI编程软件就可以对电机进行各种要求的编程!这种电机可以搭配不同螺距的螺杆,以满足用户不同的精度要求,其最大行程可以达到508mm,这种电机可以用在小型自动化机器人,激光或者光学设备的调焦系统,高分辨率的成像设备,流体控制和其他很多需要精确控制的场合中!IDEA系统是一个把直线步进电机和驱动器完美整合到一起的系统,整合后它结构紧凑,操作简单,只需通过GUI编程软件就可以对驱动器进行编程,编程过程也非常简单容易,只要用鼠标点击操作界面上的各项生动的按纽就可以完成,而不需要自己输入编程语言,IDEA可以让编程人员一行一行的进行程序调试,以方便编程员调试程序,输入端口和输出端口也可以在编程软件上得到模拟!IDEA驱动器的另一个特性就是可以控制运行电流,驱动器需要一个能提供12-48V电压的电源提供工作电压,每个输入端口可以输入5-24V电压,以及最大4mA的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流!更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动是直线传动领域的著名企业,最近公司又推出了一款全新的产品,那就是自带了驱动电机的科克RGS导轨,这是一个集成了导轨,步进电机和驱动器的全新产品,这个革命性的产品完全改变了以前结构复杂和接线凌乱的布局,使之成为了一个结构非常简单,而又可以精确传动的新产品!这款RGS产品的承重滑块是带消隙技术的,这可以保证传动的精度可以达到最高,同时该滑块拥有自动补偿技术,就是滑块在长时间工作中有了磨损以后,它可以自动补偿间隙,从而能够保证其运动精度不受影响!另外该滑块是由科克一种高性能的塑料聚合物,名叫Kerkite的材料制作而成,其有耐高温,耐腐蚀的特点!在导轨的其他表面都涂了TFE干性润滑剂,整个产品在其整个工作寿命内都是免维护的!电机后面自带的驱动器是海顿科克公司的专利产品,它虽然体积小巧结构简单,但是和其他单独的驱动器有着同样强大的功能,它最大可以做到64细分!该RGS导轨是海顿和科克两大公司合并以后,两个公司产品的完美结合,它使得传动控制变的更为简单,这对安装空间有着严格要求,需要精确传动的设计方案,这无疑是最好的解决办法,同时也让您的产品变的更加精密,高贵!更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动是直线传动领域的领军企业,最近公司又推出了一款180度折叠安装驱动电机的RGS导轨,这种设计可以很好的满足在狭小的空间需要精确定位的应用环境。这种折叠式的RGS导轨包含一个传统直线系统应含的所有部件,包括一个步进电机,同步带,传动丝杆,底座支撑,导轨和负载块。在底座上还带有可以安装传感器等部件的U型槽,电机和丝杠之间的标准传动比有2:1,1:1和1:2,使用轻质铝带轮和玻璃钎维增强尼龙同步带。丝杠导程范围从0.050in/rev到1.2in/rev。当使用2:1传动比,0.050in/rev丝杠和200步每转的步进电机,位置分辨率可达到千分之0.125in。在高速应用中,1:2传动比的同步带和1.2in/rev的丝杠配合可提供的最大速度达到7in/s。海顿科克所有的RGS和RGW直线导轨都配有带消隙螺母的负载滑块,消隙螺母可以有效的提高定位精度和重复定位精度,镁铝合金做成的花键形式的导轨和303不锈钢做成的螺杆都涂有KerkoteTFE涂层,终身免维护,该折叠式RGS导轨最大的负载能力可以达到35lbs。更多信息请访问海顿直线电机(常州)有限公司网站

  直线步进电机如何小的空间实现大的推力,是医疗仪器,分析仪器,实验室设备,自动化设备,通讯设备等行业的需求,HaydonkerkPittman(HKP)工程师们对现有的43系列电机进行了重新设计,通过重新设计电机的转子和定子,更换更高强度的轴承,在同步长前提下,电机高,中,低速运动中都推力得到了很大提升,具体提升多少,我们直播间用数据来更直观地告诉你!长按识别二维名直播

  海顿科克直线传动做为直线传动领域的领军型企业最近推出了全新的配28000驱动电机SRA04系列直线系统,为了减少额外直线导向机构,海顿科克的SRA系列简化了设计和制造,把所有部件都整合到了一起,整个直线系统非常紧凑,相比传统的直线%的空间。整个直线导轨由一根科克的精密丝杆和铝合金的圆柱型外壳和螺母组成,丝杆被外壳紧密包裹,螺母沿着的前后滑动,螺母内部有内螺纹,和丝杆咬合,用丝杆做为传动力,Kerkote的TFE涂层,有自润滑功能的螺母和轴衬可以保证这个系统的高寿命以及零维护,在选择该直线系统时,可以选择普通的SRA系列,也可以选择带消隙螺母的SRZ系列,当垂直安装时,该系统可以同时做直线和旋转两个运动,该系统最长可以做到1.8M长。该直线混合式直线电机来驱动,电机有引出线或内置连接器两种选项,连接器符合ROHS且外观有锁紧装置以保证连接可靠。连接器允许最大电流3A且允许线。这个新产品的主要应用在一些精密的设备里面,特别是一些空间很小,但是需要精确定位的地方,比如常用分析仪器,半导体设备,包装设备等等。海顿科克强大的技术可以保证该直线系统的长寿命,高稳定性和免维护,可以大大提高生产商产品的质量和竞争力。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动的IDEA驱动器现在已经能直接整合在很多电机产品上,包括混合43000直线步进电机,LRS和RGS直线导轨系统和Screwrail直线执行器,如果做为一个单独的驱动和控制器单位,IDEA驱动器可以驱动除了87000混合式电机系列之外的所有海顿的直线步进电机!为了方便用户使用,IDEA驱动器特意设计了一个独一无二的功能,就是用户在开始编程之前需要先输入海顿电机的品号(每个海顿电机都有一个品号),这样软件就会根据品号,自行设定电机的初始参数(默认值),有了这个功能用户就算不了解复杂的电机参数和深奥的步进电机原理也一样可以完成编程。而对于一个熟练的用户来说,软件同样也允许用户在电机的安全范围内改变电机的默认值!另外这个软件可以让用户在编程时一行一行的去调试程序,同时在正式连接到外部设备上前,输入和输出信号也可以在软件上面得到完全的模拟!IDEA驱动器需要一个独立的能提供12-48V电压的电源提供工作电压,驱动器的输出电流为2.6A/相(峰值为3.68A/相),驱动器自身配有8个I/O端口(4个输出端口,4个输入端口),每个输入端口可以输入5-24V电压,以及最大4mA的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流,通过一根一端是普通USB接口,另一端是小型USB接口的数据线就可以把驱动器和电脑联接起来!海顿的IDEA驱动器特别适合用在机器人,精密的光学设备,以及其他安装空间有限,控制精度要求高的场合!更多信息请访问海顿直线电机(常州)有限公司网站

  众所周知,传统的辐射校准光源,如氘灯、石英窗卤素钨灯、长弧氙灯等无法在200 nm-800 nm范围内保持较高的输出,并且在使用100小时或更短时间后需要进行重新校准,在使用500小时后还需要更换灯泡。图1 LDLS与其他传统光源的性能对比基于此,Hamamatsu集团旗下的Energetiq公司研发出单点激光驱动光源技术,并将其命名为激光驱动白光光源(Laser Driven Light Source, LDLS),该类光源不仅可以在170nm-2500nm的光谱范围内提供超高发光亮度,而且整个光源的发光寿命相比较于传统光源也高出了整整一个数量级。激光驱动白光光源(LDLS)激光驱动白光光源(以下简称,LDLS)由一个特殊设计的灯室、驱动激光光源、激光聚焦光路、光源输出光路、光源控制器等主要部分组成。图2 LDLS发光原理其原理是采用无电极结构,将外置1000 nm左右波长的激光汇聚到光源灯室中,加热氙等离子体至足够高温时发光,灯室发光后系统会自动给灯室断电,发光等离子体的状态就一直由外部激光器所保持。图3 LDLS产品参数与常见的有氘灯、钨灯、氙灯等传统光源相比,LDLS在亮度、稳定性、UV波长覆盖、寿命上都有很大突破。LDLS性能优势1、高亮度LDLS是高亮度光源,可以将光源压缩成一个极小的点,拥有极高的功率密度,超小光点成像(~0.1 mm)变得更容易,也更容易耦合进光纤、光谱仪等各种光学设备。适用于成像应用和测量诸如微芯片、生物细胞等精密测量样本的应用。图3 氙灯光源灯焰与LDLS灯焰比较2. 宽光谱范围LDLS光谱分布涵盖了深紫外—可见光—近红外的光谱范围(170nm-2500nm),光谱分布平坦相比于传统光源在深紫外波段光谱有极高光谱强度(10X)。图4 EQ-99X和卤钨灯光谱分布对比图5 LDLS系列光源光谱强度分布和传统光源对比3. 长寿命LDLS具有超长灯室寿命,超9000小时典型时长(低耗材成本),与传统光源(氙灯、氘灯、卤钨灯)相比校准时间间隔更长、漂移更低。图6 LDLS光源寿命4. 高稳定性LDLS 以每秒200帧的速度收集和存储2500张图像 ,使用ImageJ(图像分析软件)计算每张图像的质心; 发光等离子体质心位置标准差: 水平方向—0.145 µ m;垂直方向—0.094 µ m。产品应用紫外-可见光光谱分析单色仪光源薄膜检测 滤光片/光学元件测试原子吸收光谱材料特征检测环境分析高光谱成像气相分析测量光学传感器检测生命科学与生物成像

  0引言随着科技的发展,电子设备的集成度越来越高,升级换代的速度越来越快,随之而来的可靠性问题也越来越突出。传统的可靠性试验已经很难满足发展的要求,因此近些年越来越多机构开始引进高加速寿命试验(HALT:HighlyAcceleratedLifeTesting)/高加速应力筛选(HASS:HighlyAcceleratedStressScreening)试验方法,用于克服传统的可靠性试验存在的周期长、成本高和效率低等问题。a)HALTHALT主要应用于产品的研制阶段,是为了得出产品的设计裕度和极限承载能力(破坏或损伤极限)而设计的一种试验,主要试验步骤有:1)低温步进应力试验(以5℃或10℃为步长);2)高温步进应力试验(以5℃或10℃为步长);3)温度循环试验(温度变化速率为60℃/min,5个循环);4)振动步进应力试验(以5Grms为步长);5)综合应力试验(第3)和第4)步综合试验)。b)HASSHASS应用于产品量产阶段,目的是在极短的时间内发现批量生产的成品是否存在生产质量上的隐患。HASS试验剖面的选择主要是依据HALT的结果、产品性能测试所需要的时间、产品试验过程中所施加的应力和产品产量等,其一般试验如下所述。1)温度循环试验温度一般取工作极限温度范围的80%,试验温度保持时间一般取决于样品温度到达平衡所需要的时间和测试样品工作状态所需要的时间,温度变化速率为40~60℃/min。2)振动应力振动量级一般取破坏极限的50%,如果超过工作极限,则取工作极限的80%。以上是开展HALT/HASS的基本要求,能满足HALT/HASS试验要求的试验设备要求如下:温度范围为-100~+200℃,温度变化速率为40~60℃/min,气动式三轴六自由度振动台(可产生多轴连续的超高斯宽带伪随机振动信号)的振动频率为5Hz~10kHz,振动方向包括X、Y、Z轴向的线设备介绍基于上述试验要求,需要有一套试验设备才能满足HALT/HASS试验的开展。现以广五所研制的HALT/HASS试验箱来阐述其实现原理。本试验箱可用于电子、电工和军工产品按国标、国军标和行业标准进行上述单项环境应力或多环境综合应力组合的可靠性与模拟环境试验。1.1技术指标和性能a)标称内容积:1.0m3。b)温度范围:-100~+200℃。c)温度波动度:≤2℃。d)温度最大变化速率:1)≥70℃/min(标准负载下,-80~+150℃,全程平均,试验空间入风区控制点测量);2)≥60℃/min(标准负载下,-100~+200℃,全程平均,试验空间入风区控制点测量)。e)标准负载:10kg铝锭。f)气锤振动台:采用三轴6个自由度的随机振动,频率范围为5~10kHz。g)振动能量:100Grms,90%的振动能量集中在5Hz~4kHz低频范围内。h)振动稳定度:± 1Grms(达到稳定设定值1min内)。i)控制精度:± 1Grms(稳定1min后),最小1Grms起振,步进1Grms。j)台面振动均匀度:振动台面振动均匀度在30%以内。1.2主要特点a)适用于温度、振动应力综合试验。b)控制方式:液氮比例控制阀控制冷量,可实现温度变化速率无级可调,高效节能,控制精度高。c)结构紧凑,占地面积少。d)噪声低。2试验箱结构及控制原理试验箱主要由试验箱体、振动机构、液氮机构和电气控制系统组成。其剖面结构图如图1所示,图中主要功能部件名称为:1.试验箱体保温层,2.液氮系统,3.电机及叶轮,4.气压平衡口(排气口),5.加热器,6.出风口,7.指示灯,8.人机界面,9.控制端子,10.电控部分,11.气动部分,12.气锤振动台,13.安装座,14.气锤。图1试验箱总体结构2.1试验箱体试验箱体由外箱、内箱和保温层组成。外箱为双面镀锌钢板,表面喷塑处理,外箱内侧辅以钣金结构件或型材作为骨架加强。各个零件间采用CO2气体保护电弧焊、点焊和压铆等工艺进行连接,整体结构牢固美观。内箱材料选用需考虑到满足温度范围、防止生锈、振动和可焊接性等因素,板材方面使用SUS304不锈钢板,具有高的耐蚀性,较好的冷作成型和焊接性,很好的机械性能。在低温、室温和高温下均有较高的塑性和韧性。试验箱体保温层由硬质聚氨脂发泡层和玻璃纤维材料进行绝热保温,硬质聚氨脂板是一种具有保温与防水功能的新型合成材料,其导热系数仅0.022~0.033W/(m.K)。硬质聚氨脂发泡层通过多异氰酸酯、组合聚醚(多元醇)、阻燃剂、催化剂和发泡剂等其他助剂混合而成,覆盖在外箱内表面。玻璃纤维是一种无机质纤维,具有成型好、体积密度小、热导率低、保温绝热、吸音性能好、耐腐蚀和化学性能稳定等特点。2.2电气控制本试验箱的电控部分所使用的测量系统、IO模块、HMI和CPU模块都是由广五所研发,使用RS485通讯方式,电控系统的总体框图如图2所示。图2试验箱电控总体框图2.3温度调节机构及控制温度调节结构是温度控制的关键部分,包括加热器、液氮系统和搅拌风机。其中,加热器、液氮雾化喷嘴和搅拌风机按顺序(如图1所示)设置在箱体的气体调节通道内。其工作原理为:采用强制空气对流的方法来进行热量的传递,以保证试验空间的温度均匀性。试验箱气体由离心风机叶轮从回风口吸入,通过导流装置后吹出,可以使调节通道内的加热器和雾化后的液氮进行充分的热量交换,经过搅拌均匀后的风经导风口吹出进入试验区域,导风口还可以安装导风管,可以通过导风管使大件样品和散热口不在风流方向的样品内部能以最快的速率实现温度变化。出风口设置有温度测量元件,连接至测量板,测量数据通过通讯电缆传送给CPU单元,算法运算后输出控制量。本试验箱要求温度变化速率要超过60℃/min,这是温度控制的关键,升温功能由镍铬丝通电发热实现。镍铬丝具有较高的电阻率,表面抗氧化性好,温度级别高,并且在高温下有较高的强度,有良好的加工性能和可焊性,是现有高效的加热材料,应用时设计为三相平衡。由于机械制冷很难实现这样的降温速率,因此本试验箱采用的是液氮制冷方式。液氮的沸点低,价格相对便宜,常压下液氮的温度为-196℃,1m3的液氮可以膨胀至696m3、21℃的纯气态氮。虽然液氮汽化后变为氮气,氮气是惰性气体,在大气中重量比75.5%,但是在实验室内,如果试验时氮气不能及时排到室外,可能会造成室内人员缺氧,因此试验箱配有气压平衡装置把氮气排到室外,由于气化过程中压强升高,气体能从试验区顺利排出,避免箱体受压变形,这也是气压平衡装置名称的由来。液氮系统是温度调节结构的核心,其结构示意图如图3所示,各个功能部分的名称如下:1.空气压力报警,2.空气调压阀,3.空气电气比例阀,4.液氮比例控制阀,5.液氮管路排气电磁阀,6.液氮压力安全泄压阀,7.液氮压力报警,8.液氮主管路电磁阀,9.保温层,10.液氮雾化喷嘴。图3液氮系统图液氮由氮气罐接口接入,通过液氮电磁阀控制通断,液氮电磁阀在运行时打开,设备故障或停止时关闭。排气阀的作用是试验前对液氮管路进行排空,保证试验时管路里面都是液态氮,以确保试验的可靠性、稳定性和可重复性。液氮比例控制阀属于节流元件,是控制执行器的关键器件,开度在0~100范围接近线性的输出,以利于大范围的调整,能保证降温时的大流量要求,也可以满足恒定时小流量的需要,具有明显的节能效果。由于液氮在常压下的蒸发温度为-196℃,与试验设定温度相差很大,因而需要精确控制流量才不会造成温度过冲或大幅回升。为了保证对温度的精确控制,就要考虑响应时间的问题,传统的电动执行装置响应时间过长,明显不能满足这个需要。因此本试验箱采用的是气动驱动以保证快速响应。为了使液氮比例控制阀的响应速率满足要求,我们使用了一个称为电气比例阀的驱动器来控制供气的压强,它可以把控制输出的模拟电信号转化为压强输出,电气比例阀的输入信号类型及范围需要和控制输出一致,输出压强范围要和液氮比例控制阀一致,这样才能保证控制精度。为了防止快速升温、降温过程中过冲量过大,还需要做控制算法上的处理,如果不能及时预判当前温差、温度变化的速率,就会造成过冲量大,震荡次数多,或者过早减少输出保证不了速率。针对长距离快速温度变化,对设定曲线增加一些非线性的降温处理,并在降温转恒温阶段由PID控制切换到PI控制。针对短距离步进,使用模糊控制加PID的控制方式,并对输出的范围加以约束。经过液氮比例控制阀的液化氮送到雾化组件进行雾化,雾化组件的核心部件是液氮喷嘴,其作用就是把液氮雾化,喷到通道后快速汽化,雾化后颗粒的大小、喷射角度和流量的多少都要与降温的需要相一致,这样才能保证控制精度。流量决定了降温速率的达成可能性,喷射角度和雾化后颗粒直径决定了换热的效率,颗粒越小越好,喷射角度越大越好。2.3振动系统及控制振动台系统由振动台、供气系统和控制系统组成。振动台有两层结构面板,由结构螺丝连接,上层固定待测物,下层锁紧气锤,其特点是台面质量轻,同时增加台面刚性,刚性加强后可以有更好的振动传导特性,低频振动能量较高。频率范围更宽,扩展到5~1000Hz,并且90%的能量都集中在5~4000Hz范围内,因为大部分电子产品的失效频率都集中在这一频段内,可以有效地快速激发产品故障。振动台上表面采用衬垫式的安装螺孔,并有凸起部分,采用此结构的设计理念,一是可以改善振动的传导特性,把更多的振动激励传导到样品上;第二是凸起结构可以使得样品或夹具和台体表面具有一定的空余间隙,风流可以顺利通过样品或夹具底部从而保证样品的上下表面温度更加均匀。振动台面增加陶瓷涂层的结构设计,可以抗腐蚀,耐高低温,更好地保护振动平台和气锤,延长使用寿命;还可以保证设备长时间在高低温环境下运行,延长设备的使用寿命。气锤分大中小3种不同的型号,多种气锤的组合更有利于台面激励的均匀性,采用高压油雾器对气锤进行润滑,可以降低气锤的故障率,延长气锤的使用寿命。排气时气体统一由消声器排出,降低振动噪音。振动台安装在箱内弹簧隔离座上,可起到减震作用,不影响气锤工作时的激励作用。在密封连接处理上,振动台面与试验箱底板采用软连接,需要时可以拆装。对振动台的控制其实就是对气锤的控制,也就是对进入气锤的气体压强的控制,有点类似于液氮的控制方法,既需要振动的快速性又需要稳定性,这里也用到了电气比例阀。由于加速度的测量不像温度测量那样稳定,需要用到振动信号的转换板,将其转化为模拟信号或者通过通讯反馈到CPU单元,进行算法运算,输出模拟信号给电气比例阀,控制进入气锤的气体压强,从而控制气锤产生的激励。只要气源压力和供气管路保证流量,正常的负反馈控制都可以实现。这里有两个难点,都属于硬件的固有特性方面的问题。一个是加速度传感器的信号微弱,测量值不够精确稳定,需要在测量时做滤波处理,转换为数字量后还可能需要再次做滤波处理,这两次滤波效果会直接影响控制精度和控制品质;另一个就是气锤在较小能量级时整个台面不太稳定,会造成加速度传感器测量跳动比较大,也会影响控制品质,这时候需要更慢的输出变化。3结束语本文对HALT/HASS试验箱的结构和工作原理进行了阐述,以上系统经多个客户的使用证明完全满足HALT/HASS的要求。通过该试验箱进行HALT/HASS能切实提高电子设备的可靠性,大大地降低试验成本。此结构简单紧凑,运行噪声小,能耗适中,可靠性高。此类试验设备在国内的产品化对HALT/HASS试验的推进起到了积极作用,可大大地提高电子行业及其他相关行业产品整体的可靠性。

  海顿科克直线传动是美国AMETEK集团公司的一员,是全球直线传动领域的领军型企业,最近公司新推出了21000系列双叠厚电机,该产品的推出有丰富了海顿混合式系列的产品线,同其他电机一样,电机使用最先进的材料和制造工艺以保证其优秀的品质,众所周知,海顿电机一直都是品质最好的直线双叠厚电机,其截面边长为21MM,结构非常小巧,但是最大推力可以达到7.7KG,空间推力比非常大,同样的其也有三种结构可选,固定轴式,外部驱动式和贯通轴式,步进步长从0.0025-0.04MM可选,超长寿命,免维护。为了保证电机的运动精度,海顿科克严格遵守电机质量控制体系,所有电机都有着极高的一致性,其关键的部件螺杆和螺母都是在美国加工而成,其精度和强度都是业内最好的,另外客户还可以通过驱动器细分,进一步提高电机的分辨率。21000双叠厚电机其使用也十分广泛,精密医疗仪器,半导体生产设备,XY平台,手持式检测设备等行业都有很多的应用,另外,海顿科克还可以根据客户要求进行客户化定制,满足客户的特殊的需求。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动是美国AMETEK集团公司旗下的一员,最近公司又推出了一款IDEA系列的智能驱动器PCM4806E,该驱动器通过了美国RoHS体系认证,具有闭环位置反馈功能,而且还能精确的控制小安培电流,特别适合用来驱动永磁式系列的直线步进电机。驱动器编码器接口可接受单端,双通道正交编码器输出信号和每转指针信号。A、B通道信号相位上相差90° ,驱动器根据A、B通道信号的先后来确定运动的方向。驱动器采用倍频方式将1000线脉冲信号用于精确的位置反馈。PCM4806E和以往的驱动器一样,都可以直接在电脑界面上对驱动器进行各种参数设置,当然在这之前客户需要先在电脑上安装操作软件,海顿公司会提供软件安装盘,只要在软件里面输入购买的电机的型号,软件会自动匹配好电机运行的电气方面的参数,客户所需要做的是对电机运动的流程做编程,客户甚至都不需要有很强的电机编程的专业知识,只要通过点击操作界面的相应运动说明按钮,就会自动生成编程语言,而且该软件还具有逐步调式功能,对客户来说使用非常的简单方便。PCM4806E驱动器可以使用12-48V的外接电源驱动,最大输出电流为0.6A,另外该驱动器还提供通用I/O接口,最大输入功率5-24V,8mA,最大输出功率5-24V,200mA。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动最近新推出了一款使用RS-485通信协议的步进电机驱动器,这款使用RS-485通信协议的IDEA驱动器克服了使用其他通信协议的驱动器的缺点,使得RS-485-IDEA驱动器可以应用到更为广泛的工业产品应用中。在工业设备上尤其是像步进电机驱动,伺服电机驱动使用RS-485通信协议的驱动器最为明显的优点信息传输不受电磁的干扰,信息数据可以传输的更远。RS-485通信协议规定使用不同电缆线(差分信号)来降低共模干扰,同时使用双绞线来抵消感应噪声(消除电磁干扰),这就使得新的IDEA驱动器直接的通信距离可以达到1000英尺,中间不用加任何电阻(无需接终端电阻),该通信协议(网络)可以设定高达256个网络(终端设备)地址,一个中央控制器(PLC)(工业控制器)能同时发送相同的命令给网络内的不同地址所有驱动器终端,或者中央控制器(工业控制器)也可以单独控制网络内各个(任意一个)驱动器终端,各个终端的网址(地址)可以是0-255之间的任何一个数字。海顿科克的IDEA驱动器是一款符合美国RoHS认证,体积小巧的步进电机驱动器,它可以通过安装在电脑上的软件进行各式各样的编程,IDEA驱动器还有许多其他优点,包括支持程序调试,驱动器的输出电流为2.6A/相(峰值为3.68A/相),驱动器自身配有8个I/O端口(4个输出端口,4个输入端口),每个输入端口可以输入5-24V电压,以及最大4mA的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动是直线传动领域的领军型企业,公司新近推出了全新结构的G4-37000电机,这个新结构在原电机的基础上增加了一个特别的size14的安装盘,有了这个安装盘后尺寸更小的37000电机可以完美的替代原来的35000系列电机。海顿的G4-37000电机其性能不仅仅是超越了目前市面上同尺寸的电机,而且达到了很多厂家的35000系列电机的水平。增加了全新安装盘的过G4-37000电机可以方便的安装到原来安装混合式35000系列电机的地方,甚至连原来的安装螺丝都不用更换。如果高精度的混合式35000电机不是必须的话,那么价格更便宜的带size14安装盘的G4-37000电机是最佳的选择,该电机的推力输出范围为70N-260N。海顿全新的G4系列电机应用了全新技术,使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承,这使得该电机可以在更小的体积内输出更大的推力,相比其他厂家的同尺寸电机其推力有20%左右的提升。该电机有广阔的应用空间,包括医疗设备,扫描设备,打印机,实验室仪器设备,以及其他很多精密的设备上,该电机有三种形式,外部驱动式,贯通轴式以及固定轴式。更多信息请访问海顿直线电机(常州)有限公司网站

  3月17日,科技部高技术研究发展中心(基础研究管理中心)发布2022年度中国科学十大进展。中科院上海微系统所宋志棠、朱敏团队的“新原理开关器件为高性能海量存储提供新方案”脱颖而出,荣获2022年度中国科学十大进展(图1)。中国科学十大进展遴选活动由科技部高技术研究发展中心牵头举办,其遴选程序分为推荐、初选和终选3个环节。终选阶段,中国科学院院士、中国工程院院士、国家重点实验室主任等3500余位知名专家学者对30项候选科学进展进行网上投票,最终,得票数排名前10位的入选。图1新原理开关器件成果荣获2022年度中国科学十大进展高密度与海量存储是大数据时代信息技术与数字经济发展的关键瓶颈。中国科学院上海微系统与信息技术研究所宋志棠、朱敏团队发明了一种新型基于单质碲和氮化钛电极界面效应的开关器件(图2),充分发挥纳米尺度二维限定性结构中碲熔融—结晶速度快、功耗低的独特优势,“开态”碲处于熔融状态是类金属、和氮化钛电极形成欧姆接触,提供强大的电流驱动能力,“关态”半导体单质碲和氮化钛电极形成肖特基势垒,彻底夹断电流。该晶-液态转变的新型开关器件,组分简单,可克服双向阈值开关(OTS)复杂组分导致成分偏析问题;工艺与CMOS兼容且可极度微缩,易实现海量三维集成;开关综合性能优异,驱动电流达到11MA/cm2,疲劳108次以上,开关速度~15ns,尤其碲原子不丢失情况下开关寿命可大幅提升。该研究突破为我国发展海量存储和近存计算,在大数据时代参与国际竞争提供了新的技术方案。该成果发表在国际顶尖杂志Science(2021,374,1390-1394)上。图2新原理开关器件及其晶态-液态新型开关机理(Science,2021,374,1390-1394)中国科学院上海微系统与信息技术研究所是我国著名的技术学科综合性研究所之一,前身是成立于1928年的国立中央研究院工程研究所。上海微系统所现有传感技术、集成电路材料、微系统技术三个国家级重点实验室,有无线传感网与通信、太赫兹固态技术、高端硅基材料三个中科院重点实验室。设有传感技术实验室、纳米材料与器件实验室,太赫兹固态技术实验室、微系统技术实验室、宽带无线通信实验室、硅基材料与集成器件实验室、超导电子学实验室、仿生视觉系统实验室、2020X-Lab实验室等九个实验室。

  海顿科克直线传动是世界领先的直线传动设备制造商,最近公司又推出了全新安装结构的G4-37000直线步进电机,这个新结构在原有的电机上加装了一个特别的安装定位金属盘,有了这个结构,可以使本来比较小的36MM直径的G4-37000电机可以替换原来使用42MM或者是46MM直径的电机的应用场合。海顿的G4-37000系列直线步进电机其性能不仅超越了目前市场上的同尺寸的电机,其性能更是逼近很多厂家的42MM,甚至是46MM的步进电机,海顿推出这种新的结构的G4-37000电机就是为了方便客户替换现在使用的42和46电机,客户用原来的螺钉和螺纹孔就可以轻松实现换装。带全新安装盘的G4-37000电机最大的优点就是相比更大尺寸的电机,性能不变,安装也不变,但是成本却会降低,所以性价比较高。该电机的推力输出范围在70N-260N之间。G4-37000电机使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承,这使得该电机可以在更小的体积内输出更大的推力,相比其他厂家的同尺寸电机其推力有20%左右的提升。该电机有广阔的应用空间,包括医疗设备,扫描设备,打印机,实验室仪器设备,以及其他很多精密的设备上,该电机有三种形式,外部驱动式,贯通轴式以及固定轴式。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动最近又扩展了使用IDEA智能驱动器的电机产品线,IDEA是一款符合美国RoHS标准,使用方便的智能驱动器,它是一个完整的电机控制单元,并且可以完美的和电机安装成一个整体,所以它非常适用于各种安装空间狭小的精密系统或者设备中。该IDEA驱动器为了增加更多功能,使用了RS-485通信协议,从而克服了其它很多驱动器使用场合的限制,(使IDEA与其它的驱动器之间的通讯不再受到限制,)是工业应用中的最佳选择。在工业设备中尤其像步进电机驱动,伺服系统以及其他电机驱动使用RS-485通信协议,可以有效的避免电子干扰,使得数据可以传输的更远,RS-485通信协议规定使用不同的信号线(差分信号传输)来消除共模噪音(共模干扰),使用双绞线来抵销感应噪声电流,这样就可以使海顿的IDEA驱动器信号传输距离可以达到1000步远(1000英尺,并且不需要连接终端电阻),同时还有高达256个不通的网络地址可供选择(设备挂接地址节点)。一个中央处理器可以同时给所有的驱动器发指令,或者根据驱动器的特定的网络地址单独的控制该驱动器,网络地址可以是0-255任意一个数字。此外,IDEA驱动器需要一个独立的能提供12-48V电压的电源提供工作电压,驱动器的输出电流为2.6A/相(峰值为3.68A/相),驱动器自身配有8个光电隔离I/O端口(4个输出端口,4个输入端口),每个输入端口可以输入5-24V电压,以及最大4mA的电流,输出信号是集电极开路信号,每个输出端口可以输出5-24V电压,以及最大200mA的电流。更多信息请访问海顿直线电机(常州)有限公司网站

  内容简介薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、MiniLED和MicroLED技术及触控技术的原理与应用。作者简介邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si及p-SiTFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章偏振光学基础与应用1.1光的偏振性1.1.1自然光与部分偏振光1.1.2偏振光1.2光偏振态的表示方法1.2.1三角函数表示法1.2.2庞加莱球图示法1.3各向异性介质中光传播的偏振性1.3.1反射光与折射光的偏振性1.3.2晶体的双折射1.3.3单轴晶体中的折射率1.4相位片1.4.1相位片的定义1.4.2相位片在偏光片系统中1.4.3相位片的特点1.4.4相位片的分类1.4.5相位片的制备与应用1.5波片1.5.1快轴与慢轴1.5.2λ/4波片1.5.3λ/2波片1.5.4λ波片1.5.5光波在金属表面的反射1.5.6波片的应用参考文献第2章液晶基本特点与应用2.1液晶发展简史2.1.1液晶的发现2.1.2理论研究2.1.3应用研究2.2液晶分类2.2.1热致液晶2.2.2溶致液晶2.3液晶特性2.3.1光学各向异性2.3.2电学各向异性2.3.3力学特性2.3.4黏度2.3.5电阻率2.4液晶分子合成与性能2.4.1单体的合成2.4.2混合液晶2.4.3单体液晶分子结构与性能关系2.5混合液晶材料参数及对显示性能的影响2.5.1工作温度范围的影响2.5.2黏度的影响2.5.3折射率各向异性的影响2.5.4介电各向异性的影响2.5.5弹性常数的影响2.5.6电阻率的影响2.6液晶的应用2.6.1显示领域应用2.6.2非显示领域应用参考文献第3章广视角液晶显示技术3.1显示模式概述3.2TN模式3.2.1显示原理3.2.2视角特性3.2.3视角改善3.2.4响应时间影响因素与改善3.3VA模式3.3.1显示原理3.3.2视角特性3.3.3视角改善3.4IPS与FFS模式3.4.1显示原理3.4.2视角特性3.5偏光片视角补偿技术3.5.1偏振矢量的庞加莱球表示方法3.5.2VA模式的漏光补偿方法3.5.3IPS模式的漏光补偿方法3.6响应时间3.6.1开态与关态响应时间特性3.6.2灰阶之间的响应时间特性3.7对比度参考文献第4章薄膜晶体管器件SPICE模型4.1MOSFET器件模型4.1.1器件结构4.1.2MOSFET器件电流特性4.1.3MOSFET器件SPICE模型4.2氢化非晶硅薄膜晶体管器件模型4.2.1a-Si:H理论基础4.2.2a-Si:HTFT器件电流特性4.2.3a-Si:HTFT器件SPICE模型4.3LTPSTFT器件模型4.3.1LTPS理论基础4.3.2LTPSTFT器件电流特性4.3.3LTPSTFT器件SPICE模型4.4IGZOTFT器件模型4.4.1IGZO理论基础4.4.2IGZOTFT器件电流特性4.4.3IGZOTFT器件SPICE模型4.5薄膜晶体管的应力老化效应参考文献第5章液晶取向技术原理与应用5.1聚酰亚胺5.1.1分子特点5.1.2聚酰亚胺的性能5.1.3聚酰亚胺的合成5.1.4聚酰亚胺的分类5.1.5取向剂的特点5.2取向层制作工艺5.2.1涂布工艺5.2.2热固化5.3摩擦取向5.3.1工艺特点5.3.2摩擦强度定义5.3.3摩擦取向机理5.3.4预倾角机理5.3.5PI结构对VHR和预倾角的影响5.3.6摩擦取向的常见不良5.4光控取向5.4.1取向原理5.4.2光控取向的光源特点与影响参考文献第6章面板驱动原理与常见不良解析6.1液晶面板驱动概述6.1.1像素结构与等效电容6.1.2像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4电容耦合效应6.1.5驱动电压的均方根6.2串扰6.2.1定义与测试方法6.2.2垂直串扰6.2.3水平串扰6.3闪烁6.3.1定义与测试方法6.3.2引起闪烁的因素6.4残像6.4.1定义与测试方法6.4.2引起残像的因素参考文献第7章电路驱动原理与常见不良解析7.1液晶模组驱动电路概述7.1.1行扫描驱动电路7.1.2列扫描驱动电路7.1.3电源管理电路7.2眼图7.2.1差分信号7.2.2如何认识眼图7.2.3眼图质量改善7.3电磁兼容性7.3.1EMI简介7.3.2EMI测试7.3.3模组中的EMI及改善措施7.4ESD与EOS防护7.4.1ESD与EOS产生机理7.4.2防护措施7.4.3ESD防护性能测试7.4.4EOS防护性能测试7.5开关机时序7.5.1驱动模块的电源连接方式7.5.2电路模块的时序7.5.3电源开关机时序7.5.4时序不匹配的显示不良举例7.6驱动补偿技术7.6.1过驱动技术7.6.2行过驱动技术参考文献第8章低蓝光显示技术8.1视觉的生理基础8.1.1人眼的生理结构8.1.2感光原理说明8.1.3光谱介绍8.2蓝光对健康的影响8.2.1光谱各波段光作用人眼部位8.2.2蓝光对人体的影响8.3LCD产品如何防护蓝光伤害8.3.1LCD基本显示原理8.3.2低蓝光方案介绍8.3.3低蓝光显示器产品参考文献第9章电竞显示技术9.1电竞游戏应用瓶颈9.1.1画面拖影9.1.2画面卡顿和撕裂9.2电竞显示器的性能优势9.2.1高刷新率9.2.2快速响应时间9.3画面撕裂与卡顿的解决方案9.4电竞显示器认证标准9.4.1AMDFree-Sync标准9.4.2NVIDAG-Sync标准参考文献第10章量子点材料特点与显示应用10.1引言10.2量子点材料基本特点10.2.1量子点材料独特效应10.2.2量子点材料发光特性10.3量子点材料分类与合成10.3.1Ⅱ-Ⅵ族量子点材料10.3.2Ⅲ-Ⅴ族量子点材料10.3.3钙钛矿量子点材料10.3.4其他量子点材料10.4量子点显示技术10.4.1光致发光量子点显示技术10.4.2电致发光量子点显示技术参考文献第11章MiniLED和MicroLED原理与显示应用11.1概述11.2LED发光原理11.2.1器件特点11.2.2器件电极的接触方式11.2.3器件光谱特点11.3LED直显应用特点11.3.1尺寸效应11.3.2外量子效应11.3.3温度效应11.4巨量转移技术11.4.1PDMS弹性印章转移技术11.4.2静电吸附转移技术参考文献第12章触控技术原理与应用12.1触控技术分类12.1.1从技术原理上分类12.1.2从显示集成方式上分类12.1.3从电极材料上分类12.2触控技术原理介绍12.2.1电阻触控技术12.2.2光学触控技术12.2.3表面声波触控技术12.2.4电磁共振触控技术12.2.5电容触控技术12.3投射电容触控技术12.3.1互容触控技术12.3.2自容触控技术12.3.3FIC触控技术12.4FIC触控的驱动原理12.4.1电路驱动系统架构12.4.2FIC触控屏的两种驱动方式12.4.3触控通信协议12.4.4触控性能指标参考文献附录AMOSFET的Level1模型参数附录Ba-Si:HTFT的Level35模型参数附录CLTPSTFT的Level36模型参数附录DIGZOTFT的Level301模型参数(完善中)反侵权盗版声明封底

  海顿科克直线传动是直线传动领域的领军型企业,最近公司又推出了全新的应用于G4-25000系列电机上的编码器。固态技术的应用使得该增量式编码器的结构极其紧凑,该编码器通过双检波电路,由一个信号芯片进行信号处理。在医疗设备、分析仪器或机器人行业中,为获得精准的位置反馈,就可以使用海顿公司的永磁式电机配套该编码器。该64线正交脉冲编码器选用高性能的钕作为磁性材料,8位数字信号处理,每圈总计输出256个脉冲。该编码器有A/B相输出,相位差为90度。此外,还提供一个Z相脉冲即每转一个脉冲信号。该编码器最高每秒10000个脉冲,输出更新采样时间为100毫秒。256脉冲磁编码器是普通光学编码器一个绝佳的替代品,几乎不受震动,冲击,灰尘和污染物等的影响和干扰。编码器可以使用一个3.3V或5V输入电压。它与海顿25000系列线性驱动结构配套使用,势必成为一个功能强大,结构紧凑的直线系列直线步进电机与市场其他同尺寸电机相比拥有更大的输出力,G4-25000产品使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承以保证产品在整个使用寿命中都能保持免维护和重复定位精度。更多信息请访问海顿直线电机(常州)有限公司网站

  海顿科克直线传动是设计直线运动产品的主要生产厂家,现全新推出SAA06系列电动SplineRail线性执行器。一般来说,直线运动都要求两个独立的组件来处理驱动和导向,但是海顿科克的SR滑轨将这两个机构简化结合在一个单一的,同轴机构中。该SR滑轨采用了轴承支撑的精密冷轧科克丝杠,置于同轴铝导套内,用以驱动Kerkite聚合物材料的集成螺母套。铝型材花键提供了良好的扭转稳定性。KerKoteTFE涂层和自润滑Kerkite螺母套材料确保使用寿命长,免维护。该电动SR滑轨使用海顿Size17的单叠厚或者双叠厚直线步进电机。当垂直安装时,该滑轨也可以用于同时提升和旋转(Z轴)。用一个电机驱动螺杆,另一个转动导轨,这样就建立了一个自动抓放机构。螺杆导程从0.05&rdquo 到1.2&rdquo 提供了宽泛的性能区间,包括不需要外部动力或刹车就可以支撑负载的自锁螺纹。海顿科克专门从事客户运动解决方案,而SR滑轨就是基于此而研制的多功能平台。该产品可以广泛应用在医疗器械,半导体设备,科学仪器,包装机械等一系列自动化设备上,得益于海顿和科克两个产品的完美结合,大大节省了安装空间,简化了机械结构,并且产品质量优异,免维护!更多信息请访问海顿直线电机(常州)有限公司网站

  2021年12月10日,中科院上海微系统与信息技术研究所宋志棠、朱敏研究团队在国际顶级期刊《Science》上发表了题为“Elemental Electrical Switch Enabling Phase-Segregation-Free Operation”的研究论文(图1)。中科院上海微系统所博士生沈佳斌、贾淑静为共同第一作者,宋志棠研究员、朱敏研究员为通讯作者,中科院上海微系统所为第一完成单位和唯一通信单位。图1 科院上海微系统所在Science上发表单质新原理器件文章集成电路是我国的战略性、基础性和先导性产业,其中存储芯片是集成电路的三大芯片之一,直接关系到国家的信息安全。然而,现有主流存储器-内存(DRAM)和闪存(Flash),不能兼具高速与高密度特性,难以满足指数型增长的数据存储需要,急需发展下一代海量高速存储技术。三维相变存储器(PCRAM)是目前成熟的新型存储技术,其核心是两端开关单元和存储单元,然而,商用的开关单元组分复杂,通常含有毒性元素,严重制约了三维相变存储器在纳米尺度的微缩以及存储密度的进一步提升。图2 单质Te开关器件结构与性能针对以上问题,中科院上海微系统与信息技术研究所宋志棠、朱敏与合作者在Science (2021, 374, 1390) 上提出了一种单质新原理开关器件(图2):该器件通过单质Te与电极产生的高肖特基势垒降低了器件在关态的漏电流(亚微安量级,图3);利用单质Te晶态(半导体)到液态(类金属)纳秒级高速转变(图4),并产生类金属导通的大开态电流(亚毫安量级),驱动相变存储单元。单质Te开关器件基于晶态-液态新型开关机理与传统器件等完全不同,是一种全新的开关器件。单质Te具有原子级组分均一性,能与TiN形成完美界面,使二端器件具有一致性与稳定性,并可极度微缩,为海量三维存储芯片提供了新方案。图3 单质Te器件低漏电流物理机制:单质Te与电极形成的高肖特基势垒图4 单质Te器件新型开关机理:晶态-液态-晶态转变意大利国家研究委员会微电子和微系统所Raffaella Calarco教授同期在Science (2021, 374, 6573)上发表了评论文章,高度评价道:“沈等人取得的成果是前所未有的,为实现晶态单质开关器件提供了稳健的方法,此单质开关为3D Xpoint架构提供了新的视角”(What has been achieved by Shen et al., is unprecedented and provides a robust method to realize crystalline elemental switches that bear new perspectives for 3D Xpoint architectures)。该研究工作得到复旦大学刘琦教授、剑桥大学Stephen R. Elliott教授、日本群马大学Tamihiro Gotoh教授、德国亚琛工业大学Richard Dronskowski教授、赛默飞世尔科技中国有限公司史楠楠和葛青亲博士的大力支持。相关工作得到了国家重点研发项目(2017YFB0206101)、中科院先导B(XDB44010000)、中科院百人计划C类和上海科技启明星项目(21QA1410800)的资助。文章链接:评论文章链接:

  离子电渗透,是一种离子流在电场力的驱动下在介质中有向扩散的物理过程。基于此原理,离子化的药物分子在电场力的作用下可主动透过皮肤的生物屏障,提高透皮和吸收的效果。然而目前基于离子电渗透的经皮给药技术或装置,都需依赖外接电源或金属基电池来驱动获得电场力,在安全性和便捷性上不甚理想。酶燃料电池是一种新型的燃料电池,可通过生物酶在电极上的催化,将廉价底物中的化学能直接转化为电能,在柔性可穿戴电子器件供电和传感等方面展示了应用潜力。鉴于其良好的产电性能、优异的安全性和生物相容性,酶燃料电池可提供产生电场力所需的清洁、安全、低成本的电能,进而促进药物经皮吸收,有望为基于离子电渗透的经皮给药技术提供了新的能源解决方案。中国科学院天津工业生物技术研究所体外合成生物学中心研究团队,首次将柔性可穿戴的酶燃料电池与面膜相结合,在无纺布基底上制备了基于葡萄糖和葡萄糖氧化酶的酶燃料电池,并证实了其可驱动离子电渗透以促进面膜相关有效成分的经皮吸收。首先,研究人员为了最大化离子电渗透效果同时保持材料的透水透气以及生物相容性,尝试了多种在无纺布基底上制备柔性电极的材料和方法,解决了电子中介体脱落、酶载量低、接触电阻大、由于碳纳米材料导致的面膜发黑等问题,所制备的酶燃料电池可以10mM葡萄糖为底物产出约0.4V的电压和23μW/cm2的功率密度。其次,研究人员以罗丹明、烟酰胺、阿司匹林和熊果苷为例,对这些分子的经皮吸收效果进行了定性和定量的分析,基于Franz透皮实验的结果证明该离子电渗透面膜在15分钟内可提高2到3倍的分子经皮渗透量。此外,该面膜在基于小鼠急性足炎症模型的活体动物经皮给药实验中也表现出类似的促渗效果。最后,通过红细胞溶血实验和L929活性实验均证实了该面膜材料具有良好的生物相容性。这些结果初步证明了酶燃料电池驱动的离子电渗透面膜技术的可行性,为后续进一步提升其性能和可应用性奠定了基础,也为酶燃料电池驱动其他基于离子电渗透的经皮给药技术的开发提供了参考。该研究获得了国家重点研发计划的支持,相关发明专利已被授权,相关论文发表在Biosensors&Bioelectronics上,天津工业生物所博士生李泽华为论文第一作者,张以恒研究员、朱之光研究员为论文共同通讯作者。

  海顿科克直线传动是直线传动领域的领军型企业,公司新近推出了全新结构的G4-37000电机,这个新结构在原电机的基础上增加了一个特别的size14的安装盘,有了这个安装盘后尺寸更小的37000电机可以完美的替代原来的43000系列电机。海顿的永磁式G4-37000电机其性能不仅仅是超越了目前市面上同尺寸的电机,而且达到了很多厂家的单叠厚43000系列电机的水平。安装上边长43mm的安装盘后可以和43000电机一样安装使用。如果说应用项目不需要混合式步进电机的相对较高精度的线电机是您最佳的选择,它可以方便的安装到原来安装混合式43000系列电机的地方,甚至连原来的安装螺丝都不用更换。G4-37000电机相对来说,价格更为便宜,该电机的推力输出范围为70N-260N,其最小步长范围为0.013MM-0.102MM。海顿全新的G4系列电机应用了全新技术,使用了完美的定子齿形,强力钕磁钢,大尺寸的花键轴以及能提供更好的旋转支撑和更高的轴向负载能力的加大的球轴承,这使得该电机可以在更小的体积内输出更大的推力,相比其他厂家的同尺寸电机其推力有20%左右的提升。该电机有广阔的应用空间,包括医疗设备,扫描设备,打印机,实验室仪器设备,以及其他很多精密的设备上,该电机有三种形式可选,外部驱动式,贯通轴式以及固定轴式。更多信息请访问海顿直线电机(常州)有限公司网站

  进入二十一世纪,中国改革开放的成果异彩纷呈,社会进步日新月异,经济总量连年攀升,中国的科技水平、工业化水平迅速成长、不断赶超,今天我们已能与欧美等发达国家站在同一舞台、以同样的感受领略这个时代发展的喜悦和困惑,今天我们也比任何时候都更渴望实现民族复兴的崇高理想和中华崛起的伟大抱负。呼唤民族自强、自主创新,已然成为当下中国人从心底发出的最强音,党的十八大更是把创新驱动发展作为一项战略任务和政治要求放在了国家发展全局版图的重要地位。创新源于试验创新的驱动力何在?站在历史发展的潮头,纵观近代科学技术发展的路径和脉络,从十八世纪瓦特发明蒸汽机到十九世纪爱迪生建立“发明工厂”,再到二十世纪美国耗资四十二亿美元的原子能研究曼哈顿计划,走在创新道路上的先驱们不断用事实告诉我们:创新源于试验。然而,今天我们所提到的试验已与以往的试验不可同日而语。以飞机为例,过去我国航空发展主要走的是一条引进、测绘、仿制和改型的创新驱动路线,只要飞机的性能没有问题,那么我们便不会去质疑试验结果的科学性,更不会去深究我们使用的试验手段是否合理,试验方法是否还有改进空间,试验的理念、内容还能不能有所完善,因为我们试验的前提是建立在飞机是仿制出来的,我们只是将别人走过的路重复再现而已,从某种意义上来说,我们所做的试验是为了验证而不是创新。今天不同,我国已成功实现了二代机向三代机的跨越,正在努力实现从航空大国向航空强国的转型,技术封锁的加剧使得我们“无师可从”“无本可鉴”,要摆脱困窘就必须自力更生、立足自主创新,试验理论需要开拓,试验技术需要突破,试验方法需要升级,试验手段需要提升,现在一架新机的诞生无不伴随着试验而成长,这些试验包括林林总总的地面试验和空中试验,包括总体的风洞试验、静力试验和飞行试验,包括装机成品和系统的原理试验、样品试验和装机试验,包括各种材料的理化试验、元器件老化和筛选试验等等,如此复杂多样的试验内容加之相伴而生的试验理论、试验手段、试验方法、试验工艺,就构成了驱动中国航空创新发展的试验科学体系。试验科学何以成为驱动创新的原动力?作为试验科学的一个重要分支,中国飞行试验研究院(简称试飞院)用其五十多年的奋斗历程向世人诠释了试验科学之于创新的意义。飞行试验在航空产品研发中的作用不可替代所谓飞行试验,是在真实大气条件下对飞行器、航空动力装置、机载设备和系统进行的各种试验。就航空装备研制而言,这些试验是按照试飞大纲对航空产品的性能、操纵性、强度、颤振、航空电子、机载武器、环控救生等数十项系统所进行地飞行考核,在考核中发现问题、研究问题、攻克问题、不断改进,最后使其成为性能优越、战技优良、用户喜欢的产品的过程,是一场航空产品从“丑小鸭”到“白天鹅”的华丽蜕变 就航空技术研究而言,这些试验使用科学的方法、程序和原则去揭示试验对象的特性和应用过程。从概念到应用,飞行试验贯穿于航空技术和航空产品发展的始终,在此过程中,不管是技术还是产品的新概念探索、演示验证、研制装机、应用使用,飞行试验都发挥着试验科学不可替代的作用。在概念阶段要进行研究和探索性试飞。众所周知,美国许多重大的航空新技术几乎无一不是经过飞行试验研究和试飞验证而取得的。从1947年的X-1突破音障到1951年的X-5变后掠翼飞行,从1960年的X-18倾斜翼到1984年的X-29前掠翼飞机,从1990年的X-31大迎角机动到2000年的X-32飞控技术研究,从2003年的X-37无人作战试验机到今天的探索新飞行方式的X-51高超声速研究机、探索新一代军用机标准的YF-12/XB-70/NF-104,至今这种探索性研究和试飞还在继续。我国的飞行试验情况也是如此,例如:试飞院通过变稳飞机研究飞行品质特别是人机闭环特性,利用综合空中飞行模拟试验机研究电传飞机进场着陆控制律、研究无人机控制技术,利用歼八试验机研究发动机的电调控制技术,利用歼教七研究三角翼飞机的失速/尾旋特性,利用雷达电子试验机研究新型雷达的空中工作性能和软件参数调试等,通过这样的试验,突破和发展了我国大量航空应用技术,而且使得这些技术在飞行试验中认识不断深化、技术不断成熟。在演示验证阶段要进行样机功能和性能摸底试飞。为了更好地发挥飞行试验的支撑和引领作用,试飞院自主研制了多种专用试验设备及试验机以适应飞行力学、航空动力、航空电子、航空测试以及救生系统等试飞研究的需要。比如:在上世纪自建天线试验场开始了我国机载产品、飞机的雷电电击试验 研制了我国第一架空中弹射救生技术试验机,先后开展了三十余项弹射救生系统的实况试验 研制了发动机飞行试验台,先后承担了十多种航空发动机及导弹用发动机的试飞验证和专题研究 另外还研制了我国首架微重力试验机,加装了燃油补偿系统和密封电瓶系统,进行了燃/滑油试车台原理性试验、发动机失重状态模拟试车,以及燃、滑油补偿系统发动机联合试车等,在此基础上,通过失重摸索和训练,实现抛物线飞行一千余次,达到了试验目标,超过当时美国同类试验机的失重记录,为中国航天事业的发展做出了有益探索。为了提高过硬的试飞本领,试飞院还自主研发了我国两代变稳机,借助该机全面掌握了电传飞机的飞行品质试飞技术,特别是高阶系统的等效系统拟配技术、时间延迟准则、杆力灵敏度和操纵协调准则、飞机稳定裕度判据、横向跟踪准则、人机闭环准则和驾驶员诱发振荡等试飞技术,解决了我国三代战斗机试飞的大量技术问题。除此之外,为了掌握民机试飞关键技术,我国借助于已有资源开展预先研究,突破了最小离地速度、中断起飞、最大能量刹车、带冰型飞机性能试飞和自然结冰、决策速度、最小操纵速度、高平尾失速特性、高速特性、结冰特性、配平特性等高难风险科目的试飞技术和方法,为后续新支线客机的适航试飞储备了技术力量。在产品研制阶段要进行整机性能试验和装机适应性试验。一型新机、一种新型机载设备,如果不通过飞行试验,即使它的理论计算再精确,地面试验再充分,都只能是地面上的飞机模型而不是蓝天上的飞行器,只有将其放到真实大气中通过一系列的飞行试验和严格考核,才能把模型推向产品和应用,才能最终将研制的飞机和设备推向市场 同时,飞行试验也是发现和解决新机在设计、生产和制造中各种问题并使之得到改进和提高的重要环节。这就是飞行试验的作用,这就是试验科学的魅力。红专502是我国自行研制的第一个机种,上世纪六十年代初正式在试飞院揭开“通天”考验的序幕。试飞中发现飞机右偏、发动机汽缸头温度过低、滑油性能差、左右油箱耗油不均等四大问题,经过多次性能试验和“空中启动”试验,找到了飞机设计存在的缺陷,经设计改进后得到了解决,整机顺利完成鉴定。五十多年来,我国先后完成了自研的多种飞机、发动机、机载设备的国家级鉴定试飞和适航审定试飞任务,从初教六的首战告捷到歼七、歼八系列的“三机定型”,从歼十飞机的横空出世到新支线的华丽首飞,我国依靠飞行试验解决了新机研制中大量的设计和工艺问题,确保了我国一批批新机型号的设计定型、合格审定和批量投产,展示了试验科学的亮丽风采。在应用使用阶段要进行任务试飞、合成演练试飞等。飞机是空中任务的执行者又是复杂的操纵体,要在各种情况下完成任务拦截或任务攻击,如何灵活使用,如何占据有利位置对飞机使用者来说非常重要,这需要不断的练习和熟悉,需要进行多种假想情况的模拟和试验。飞机在现代战争体系中又是一个网点,除了网点内机群与机群之间、机群内飞机与飞机之间的编队、攻击等协同外,还要和网点外的其它作战资源进行调度和协同,这使得投入任务之前的训练和试验显得异常复杂和多样。试验科学的新使命中国航空最近五十年的发展史,是一个不断挑战自我、不断摸索、彰显试验科学魅力的历史,是一部从跟踪仿制走向自主创新的励志史。二十一世纪的竞争是以知识经济为中心,以创新能力为基础,以全球为竞技场的竞争。知识经济时代需要人们不断地阐明未被前人所认识的问题,不断地提出创造性解决问题的办法,不断地进行知识创新、技术创新、产品创新和服务创新。创新是民族进步的灵魂,是国家兴旺发达的不竭动力。建设创新型国家,真正实现创新驱动发展,迫切需要进一步加快国家创新体系建设,要围绕战略性新兴产业需求部署创新链,大力推进基础前沿研究,加强先导领域布局,在物质科学、生命科学、信息科学、地球科学等可能出现革命性突破的前沿方向力争在科学原理层面取得原创性突破,在关系未来长远发展的信息技术、生物技术、能源技术等关键领域力争在应用研究层面取得重大变革性创新,在关系国家安全和利益的空天、海洋、网络等战略必争领域力争在尖端技术层面取得先导性成果。很显然,建设以基础前沿研究为先导、以战略产业为核心突破的国家创新体系已成为我们迎接知识经济挑战的必然选择,是新世纪竞争的制高点,是我国实现经济增长方式和经济运行体制两个根本性转变的必然途径,也是贯彻“科学技术是第一生产力”战略的重大举措。试验科学已在我国航空等工程实践中大放异彩、屡建奇功,它在科学概念和技术应用之间架起了一座桥梁,它使科学技术得以快速转化为生产力,它符合现代科技发展的客观规律和应用规律,我们有理由坚信它也将在我国自主创新的舞台上放射出更加夺目的光彩!

  近日,中国科学技术大学高敏锐教授课题组设计并研制了一种完全由非贵金属驱动的碱性膜燃料电池(AEMFC)。该电池以Ni3N作为阳极、ZrN作为阴极(图1),在氢气-氧气和氢气-空气条件下分别展现了256mWcm-2和151mWcm-2的功率密度。相关成果以“Plasma-AssistedSynthesisofMetalNitridesforanEfficientPlatinum-Group-Metal-FreeAnion-Exchange-MembraneFuelCell”为题发表在在国际知名期刊NanoLetters上。图1.等离子体增强化学气相沉积制备的Ni3N和ZrN用于AEMFCs。利用非贵金属来驱动燃料电池将大幅度降低电池成本,摆脱对稀有贵金属资源的依耐。由于非贵金属位点活性低,结构易变性强,导致利用非贵金属驱动AEMFCs面临巨大挑战。近年来,高敏锐课题组致力于非贵金属设计高性能的AEMFC电极催化剂,已取得阶段性进展un.2021,12:2686)。然而,如何基于非贵金属材料的结构设计和调控,实现其在严苛的电池运行环境下稳定的功率输出仍然是完全非贵金属燃料电池亟需解决的难题。过渡金属氮化物具有导电性优异、电化学稳定性好以及耐腐蚀性强等特性,有望设计高活性、高稳定性AEMFC电催化剂。传统方法制备过渡金属氮化物是使用腐蚀性强的氨气作为氮源,一般会带来环境污染;而且,由于需要使用较高的合成温度,会导致材料烧结,减少催化活性位点。该研究组借助等离子体增强化学气相沉积来将氮气离子化,有效使得惰性的氮气参与反应,制备了高质量的Ni3N和ZrN催化剂。这种方法具有很好的拓展性,可在各自的金属箔上制备晶片级的Ni3N和ZrN层,展现出很好的应用前景(图2)。图2.等离子体增强化学气相沉积法制备高质量的Ni3N和ZrN。研究人员利用旋转圆盘电极系统评估了Ni3N和ZrN在碱性电解质下氢气氧化(HOR)和氧气还原(ORR)性能。结果表明,Ni3N和ZrN分别展现了优异的HOR活性和ORR活性,接近贵金属Pt/C催化剂,并且非常稳定。基于此发现,研究人员将Ni3N和ZrN分别用作阳极和阴极催化剂组装到AEMFC中,在氢气-氧气和氢气-空气下分别获得256mWcm-2和151mWcm-2的功率密。